Deep Reinforcement Learning Discovers Internal Models

نویسندگان

  • Nir Baram
  • Tom Zahavy
  • Shie Mannor
چکیده

Deep Reinforcement Learning (DRL) is a trending field of research, showing great promise in challenging problems such as playing Atari, solving Go and controlling robots. While DRL agents perform well in practice we are still lacking the tools to analayze their performance. In this work we present the Semi-Aggregated MDP (SAMDP) model. A model best suited to describe policies exhibiting both spatial and temporal hierarchies. We describe its advantages for analyzing trained policies over other modeling approaches, and show that under the right state representation, like that of DQN agents, SAMDP can help to identify skills. We detail the automatic process of creating it from recorded trajectories, up to presenting it on t-SNE maps. We explain how to evaluate its fitness and show surprising results indicating high compatibility with the policy at hand. We conclude by showing how using the SAMDP model, an extra performance gain can be squeezed from the agent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Reinforcement Learning with Hierarchies of Machines by Leveraging Internal Transitions

In the context of hierarchical reinforcement learning, the idea of hierarchies of abstract machines (HAMs) is to write a partial policy as a set of hierarchical finite state machines with unspecified choice states, and use reinforcement learning to learn an optimal completion of this partial policy. Given a HAM with deep hierarchical structure, there often exist many internal transitions where ...

متن کامل

Speeding Up HAM Learning with Internal Transitions

In the context of hierarchical reinforcement learning, the idea of hierarchies of abstract machines (HAMs) is to write a partial policy as a set of hierarchical finite state machines with unspecified choice states, and use reinforcement learning to learn an optimal completion of this partial policy. Given a HAM with potentially deep hierarchical structure, there often exist many internal transi...

متن کامل

Opponent Modeling in Deep Reinforcement Learning

Opponent modeling is necessary in multi-agent settings where secondary agents with competing goals also adapt their strategies, yet it remains challenging because strategies interact with each other and change. Most previous work focuses on developing probabilistic models or parameterized strategies for specific applications. Inspired by the recent success of deep reinforcement learning, we pre...

متن کامل

Visualizing Dynamics: from t-SNE to SEMI-MDPs

Deep Reinforcement Learning (DRL) is a trending field of research, showing great promise in many challenging problems such as playing Atari, solving Go and controlling robots. While DRL agents perform well in practice we are still missing the tools to analayze their performance and visualize the temporal abstractions that they learn. In this paper, we present a novel method that automatically d...

متن کامل

Deep Reinforcement Learning for Image Hashing

Deep hashing methods have received much attention recently, which achieve promising results by taking advantage of the strong representation power of deep networks. However, most existing deep hashing methods learn a whole set of hashing functions independently and directly, while ignore the correlation between different hashing functions that can promote the retrieval accuracy greatly. Inspire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.05174  شماره 

صفحات  -

تاریخ انتشار 2016